\[\sin(\alpha + \beta)\]
\[\cos(\alpha + \beta)\]
\[\tan(\alpha + \beta)\]
\[\begin{align*}
e^{i\left(\alpha + \beta\right)} &= e^{i\alpha} e^{i\beta} \\
\cos(\alpha + \beta) + i \sin(\alpha + \beta) &= \left(\cos{\alpha} + i \sin{\alpha}\right) \left(\cos{\beta} + i \sin{\beta}\right) \\
&= \left(\cos{\alpha}\cos{\beta} - \sin{\alpha}\sin{\beta}\right) + i\left(\sin{\alpha}\cos{\beta} + \cos{\alpha}\sin{\beta}\right)
\end{align*}\]
Exercises
By manipulating the equation $e^{i\left(3\theta\right)} = \left(e^{i\theta}\right)^3$, derive formulas for $\sin{3\theta}$ and $\cos{3\theta}$.
Hint
Use binomial expansion, then group the real and imaginary terms.
Answer
\[\begin{align*}
e^{i\left(3\theta\right)} &= \left(e^{i\theta}\right)^3 \\
\cos{3\theta} + i \sin{3\theta} &= \left(\cos{\theta} + i \sin{\theta}\right)^3 \\
&= \left(\cos^3{\theta} - 3 \cos{\theta} \sin^2{\theta}\right) + i \left(3\cos^2{\theta} \sin{\theta} - \sin^3{\theta}\right) \\
\end{align*}\]
Therefore,
\[\begin{align*}
\cos{3\theta} &= \cos^3{\theta} - 3 \cos{\theta} \sin^2{\theta} \\
&= 4\cos^3{\theta} - 3\cos{\theta} \\
\sin{3\theta} &= 3\cos^2{\theta} \sin{\theta} - \sin^3{\theta} \\
&= 3\sin{\theta} - 4\sin^3{\theta}
\end{align*}\]
Find all roots of the equation $8x^3 - 6x - 1 = 0$.
Hint 1
We know that $\cos{3\theta} = 4\cos^3{\theta} - 3\cos{\theta}$ from the last exercise.
Hint 2
Rewrite as $4x^3 - 3x = \frac{1}{2}$, then substitute $x = \cos{\theta}$.
Answer
Let $x = \cos{\theta}$.
\[\begin{align*}
\frac{1}{2} &= 4x^3 - 3x \\
&= 4\cos^3{\theta} - 3\cos{\theta} \\
&= \cos{3\theta}
\end{align*}\]
Since $\cos{\frac{\pi}{3}} = \frac{1}{2}$, we have $3\theta = \frac{\pi}{3} + 2\pi k$.
Three possible values of $\theta$ are:
\[\begin{align*}
\theta = \frac{1}{3}\left(\frac{\pi}{3}\right) &\implies x = \cos{\frac{\pi}{9}} \\
\theta = \frac{1}{3}\left(\frac{\pi}{3} + 2\pi\right) &\implies x = \cos{\frac{7\pi}{9}} \\
\theta = \frac{1}{3}\left(\frac{\pi}{3} + 4\pi\right) &\implies x = \cos{\frac{13\pi}{9}}
\end{align*}\]
You can solve all cubic equations with this method (after applying a simple horizontal translation and/or stretch).
Click here for Desmos
\[
R_\theta :=
\begin{bmatrix}
\cos{\theta} & -\sin{\theta} \\
\sin{\theta} & \cos{\theta}
\end{bmatrix}\]
\[
\begin{align*}
R_{\alpha + \beta} &= R_{\alpha} R_{\beta} \\
\begin{bmatrix}
\cos(\alpha + \beta) & -\sin(\alpha + \beta) \\
\sin(\alpha + \beta) & \cos(\alpha + \beta)
\end{bmatrix}
&= \begin{bmatrix}
\cos{\alpha} & -\sin{\alpha} \\
\sin{\alpha} & \cos{\alpha}
\end{bmatrix}
\begin{bmatrix}
\cos{\beta} & -\sin{\beta} \\
\sin{\beta} & \cos{\beta}
\end{bmatrix} \\
&= \begin{bmatrix}
\cos{\alpha}\cos{\beta} - \sin{\alpha}\sin{\beta} & -(\sin{\alpha}\cos{\beta} + \cos{\alpha}\sin{\beta}) \\
\sin{\alpha}\cos{\beta} + \cos{\alpha}\sin{\beta} & \cos{\alpha}\cos{\beta} - \sin{\alpha}\sin{\beta}
\end{bmatrix}
\end{align*}
\]
Tangent Compound Angle Identity
We can derive the tangent angle sum identity as follows:
\[\begin{align*}
\tan(\alpha + \beta) &= \frac{\sin(\alpha + \beta)}{\cos(\alpha + \beta)} \\
&= \frac{\sin{\alpha}\cos{\beta} + \cos{\alpha}\sin{\beta}}{\cos{\alpha}\cos{\beta} - \sin{\alpha}\sin{\beta}} \\
&= \frac{\sin{\alpha}\cos{\beta} + \cos{\alpha}\sin{\beta}}{\cos{\alpha}\cos{\beta} - \sin{\alpha}\sin{\beta}} \div \frac{\cos{\alpha}\cos{\beta}}{\cos{\alpha}\cos{\beta}} \\
&= \frac{\tan{\alpha} + \tan{\beta}}{1 - \tan{\alpha}\tan{\beta}}
\end{align*}\]
Exercises
By setting $\theta := \alpha = \beta$, deduce a formula for $\tan{2\theta}$.
Answer
\[\tan{2\theta} = \frac{2\tan{\theta}}{1 - \tan^2{\theta}}\]
Given that $\tan{\theta} = \frac{1}{5}$, find $\tan{2\theta}$. What do you notice about $\tan{2\theta}$?
Hint
Use the previous exercise.
Look at the numerator and denominator of $\tan{2\theta}$. Where have you seen these numbers before?
Answer
\[\begin{align*}
\tan{2\theta} &= \frac{2 \times \frac{1}{5}}{1 - \left(\frac{1}{5}\right)^2} \\
&= \frac{\frac{2}{5}}{\frac{24}{25}} \\
&= \frac{5}{12} \\
\end{align*}\]
Note that 5 and 12 are the legs of a Pythagorean triple.
In general, if $\tan{\theta} \in \mathbb{Q}$, then $\tan{2\theta} = \frac{a}{b}$ where $a$ and $b$ are the legs of a Pythagorean triple.
You can generate all possible Pythagorean triples in this way.
Half-Angle Identities
We can rewrite the cosine double-angle identity with $\frac{\theta}{2}$ in place of $\theta$.
\[\begin{align*}
\cos{\theta} &= 2\cos^2{\frac{\theta}{2}} - 1 \\
&= 1 - 2 \sin^2{\frac{\theta}{2}}
\end{align*}\]
From this, we can rearrange to obtain
\[\cos{\frac{\theta}{2}} = \pm \sqrt{\frac{1 + \cos{\theta}}{2}}\]
\[\sin{\frac{\theta}{2}} = \pm \sqrt{\frac{1 - \cos{\theta}}{2}}\]
The $\pm$ signs are necessary since $\cos(\theta) = \cos(\theta + 2 \pi)$, but $\cos{\frac{\theta}{2}} \neq \cos{\frac{\theta + 2\pi}{2}}$ (and likewise for $\sin$).
Exercise
From the above half-angle identities, derive a formula for $\tan{\frac{\theta}{2}}$ in terms of $\cos{\theta}$.
Hint
$\tan{x} = \frac{\sin{x}}{\cos{x}}$
Answer
\[\begin{align*}
\tan{\frac{\theta}{2}} &= \frac{\sin{\frac{\theta}{2}}}{\cos{\frac{\theta}{2}}} \\
&= \pm \sqrt{\frac{1 - \cos{\theta}}{1 + \cos{\theta}}}
\end{align*}\]
Practice Problems
Problems are listed in order of increasing difficulty.
- Review Set 13B, 3
- Review Set 13A, 9
- Exercise 13E, 5
- Review Set 13B, 12
- Review Set 13A, 11
- Review Set 13A, 8
- Exercise 13E, 19
- Review Set 13C, 12